Electric field enhancement and concomitant Raman spectral effects at the edges of a nanometre-thin gold mesotriangle†

نویسندگان

  • P. R. Sajanlal
  • C. Subramaniam
  • P. Sasanpour
  • B. Rashidian
  • T. Pradeep
چکیده

The local electric field enhancement at various regions of an individual nanometre-thin gold mesotriangle has been demonstrated both numerically and experimentally. This work provides, for the first time, direct experimental evidence of localized enhancement of Raman signals at three edges of nanometre-thin gold mesotriangles at single particle level, using Raman microscopy. Raman images were collected from mesotriangles of 11 mm edge length and 30 nm thickness, using adsorbed crystal violet as the probe molecule. Spatial distribution and the extent of electric field enhancement around a single mesotriangle are investigated theoretically by finite-difference time-domain (FDTD) simulations. Confocal Raman studies provided direct proof for the substantial electrical field enhancement at the edges and corners compared to the face of the mesotriangle. The simulated electric field enhancement was in the order, corner > edge > surface, which is in complete agreement with the experimental results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Grating Parameters on the Field Enhancement of an Optical Antenna under Laser Irradiation

In this study, a new approach for simulation of electric field enhancement ofplane wave laser around optical antenna was used to convert free-propagating opticalradiation to localized energy. A tapered gold tip design as a novel geometry of opticalantenna is introduced and numerically analyzed based on particle swarm optimization(PSO) by solving the Maxwell equations wit...

متن کامل

Laser Micro-Raman Spectroscopy of CVD Nanocrystalline Diamond Thin Film

Laser micro-Raman spectroscopy is an ideal tool for assessment and characterization of various types of carbon-based materials. Due to its special optical properties (CrN) coated stainless steel substrates. NCD films have been investigated by laser micro-Raman spectroscopy. The fingerprint of diamond based materials is in the spectral region of 1000-1600 cm-1 in the first order of Raman scatter...

متن کامل

Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions.

Highly organized supercrystals of Au nanorods with plasmonic antennae enhancement of electrical field have made possible fast direct detection of prions in complex biological media such as serum and blood. The nearly perfect three-dimensional organization of nanorods render these systems excellent surface enhanced Raman scattering spectroscopy substrates with uniform electric field enhancement,...

متن کامل

Elastic constants and structural properties of nanometre-thick diamond- like carbon films

Carbon coatings of thickness down to 2 nm are needed to increase the storage density in magnetic hard disks and reach the 100-Gbitsyinch target. We show that the combination of surface Brillouin scattering, X-ray reflectivity and Raman spectroscopy 2 measurements allow us to measure the mechanical and structural properties of ultra-thin tetrahedral amorphous carbon films. Densities up to 2.8 gy...

متن کامل

Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles

The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009